LPゼミ

  • 内点法のための補題を準備
  • 内点法で以下の不等式を使うようです。テキストに証明のためのヒントが載っています。以下、ヒントにしたがって考えた証明。

Suppose
x\in R^n,\, x>0,\, \sum_i(1-x_i)=0,\, a:=||1-x||<1
then, we have
\log\prod_i x_i \,\geq\, \frac{a^2}{a-1}


proof: let
y_i=1-x_i
then, due to the Jensen's inequality, we obtain
\left(\prod_i\frac{1}{1-y_i}\right)^{1/n}\leq \frac{1}{n}\sum_i\frac{1}{1-y_i}.
Note that
|y_i|<1
holds, because of
a<1.
The expression \sum_i\frac{1}{1-y_i} is represented as
\sum_i\frac{1}{1-y_i}=\sum_{k=0}^\infty\sum_i y_i^k=n+a^2+\sum_iy_i^3+\sum_iy_i^4+\cdots.
The summation \sum_iy_i^k is upper bounded as follows:
\sum_iy_i^k\leq\sum_i|y_i|^{2\cdot k/2}\leq (\sum_i|y_i|^2)^{k/2}=a^k.
Therefore, the following inequality holds:
\left(\prod_i\frac{1}{1-y_i}\right)^{1/n}\leq\frac{1}{n}\sum_i\frac{1}{1-y_i}\leq 1+(a^2+a^3+a^4+\cdots)/n=1+\frac{a^2}{n(1-a)}\leq e^{a^2/(n(1-a))}.
Taking the logarithm, we obtain the desired inequality.