• 以下の補題を使いました。

Let
p_1,\ldots,p_b\,(b\geq2)
be positive numbers such that
\sum_{\ell=1}^bp_\ell=1,
and let
\varepsilon=\frac{1}{\sqrt{b}}\min_\ell\frac{p_\ell}{1-p_\ell}.
Then, there is no e=(e_1,\ldots,e_b)\in R^b satisfying the following three conditions,
\sum_{\ell=1}^b e_\ell^2=1, \sum_{\ell=1}^bp_\ell e_\ell \geq 0, e_\ell<\varepsilon,\, \ell=1,\ldots,b.


proof:
We suppose that e\in R^b satisfies the three conditions.
The inequality \min_\ell p_\ell/(1-p_\ell)\leq 1 clearly holds, and thus,
\varepsilon\leq 1/\sqrt{b} holds.
The equality constraint \sum_{\ell=1}^b e_\ell^2=1 leads the condition that
there exists an e_i such that |e_i|\geq 1/\sqrt{b}. Moreover, we have
e_1,\ldots,e_b<\varepsilon\leq 1/\sqrt{b}, and thus, there is an e_i such that
e_i\leq -1/\sqrt{b}. Hence, we have
\frac{p_i}{\sqrt{b}} ~\leq~ -p_ie_i ~\leq~ \sum_{\ell\neq i}p_\ell e_\ell ~<~ \sum_{\ell\neq i}p_\ell \frac{1}{\sqrt{b}}\min_k\frac{p_k}{1-p_k} ~=~(1-p_i) \frac{1}{\sqrt{b}}\min_k\frac{p_k}{1-p_k} ~\leq~\frac{p_i}{\sqrt{b}}.
We reach the contradiction.

したがって
\min \{\max_k ~ e_k ~ |~ \sum_{\ell=1}^b e_\ell^2=1,\sum_{\ell=1}^bp_\ell e_\ell\geq 0\} \geq \frac{1}{\sqrt{b}}\min_\ell\frac{p_\ell}{1-p_\ell}

  • 二者択一の定理のようなものから導出できるのでしょうか? 最適化問題として見ると、ナイーブには凸性が崩れているのが厄介。